跳转至

Index

CMU 10-414/714: Deep Learning Systems

CMU 10-414/714: Deep Learning Systems - CS自学指南

【深度学习系统:算法与实现 10-714 2022】卡耐基梅隆—ai中英字幕

Deep Learning Systems 课程官网

一门相似的课程 智能计算系统官方网站

prompt

我有一份英文课程 PPT。请根据 PPT 内容,翻译出一份完整的中文笔记,要求如下:

- 用 `markdown` 代码块输出
- 公式使用 LaTeX 语法(用 `$` 包裹, `$`符号和公式之间不要有空格)
- 笔记需要涵盖 PPT 的**所有**内容,包括概念、定理、例子、图表信息等, 如果需要插入截图, 请标注
- 每行末尾不需要加上`。`
- 结构清晰,适当使用标题(`#`)、代码块、内嵌latex公式等 Markdown 语法, 其中标题为# Lec6 xxx, ## 6.1, ## 6.2...

Schedule

Homework Details

Homework Released Due Colab Link GitHub Repo
Homework 0 8/29/24 9/12/24 hw0 colab hw0 github
Homework 1 9/10/24 9/24/24 hw1 colab hw1 github
Homework 2 9/24/24 10/10/24 hw2 colab hw2 github
Homework 3 10/10/24 10/31/24 hw3 colab hw3 github
Homework 4 10/31/24 11/16/24 hw4 colab hw4 github
Homework 4 Extra (714 only) 10/31/24 11/16/24 hw4 extra colab hw4 extra github

Lecture&Homework Schedule

Date (CMU) Lecture Instructor Slides Video (2022 version) Homework
8/27 1 - Introduction / Logistics Kolter pdf YouTube / Bilibili
8/29 2 - ML Refresher / Softmax Regression Kolter pdf YouTube / Bilibili Homework 0 Released
9/3 3 - Manual Neural Networks / Backprop Kolter pdf YouTube (pt 1) YouTube (pt 2) / Bilibili (pt 1) Bilibili (pt 2)
9/5 4 - Automatic Differentiation Chen pdf YouTube / Bilibili
9/10 5 - Automatic Differentiation Implementation Chen ipynb YouTube / Bilibili Homework 1 Released
9/12 6 - Optimization Kolter pdf YouTube / Bilibili Homework 0 Due
9/17 7 - Neural Network Library Abstractions Chen pdf YouTube / Bilibili
9/19 9 - Normalization, Dropout, + Implementation Kolter pdf YouTube / Bilibili
9/24 8 - NN Library Implementation Chen ipynb YouTube / Bilibili Homework 1 Due,
Homework 2 Released
9/26 10 - Convolutional Networks Kolter pdf YouTube / Bilibili
10/1 11 - Hardware Acceleration for Linear Algebra Chen pdf YouTube / Bilibili
10/3 12 - Hardware Acceleration + GPUs Chen pdf YouTube / Bilibili
10/8 13 - Hardware Acceleration Implementation Chen ipynb YouTube / Bilibili
10/10 14 - Convoluations Network Implementation Kolter ipynb YouTube / Bilibili Homework 2 Due,
Homework 3 Released
10/15 No class - Fall Break
10/17 No class - Fall Break
10/22 15 - Sequence Modeling + RNNs Kolter pdf YouTube / Bilibili
10/24 16 - Sequence Modeling Implementation Kolter ipynb YouTube / Bilibili
10/29 17 - Transformers and Autoregressive Models Kolter pdf Youtube / Bilibili
10/31 18 - Transformers Implementation Kolter ipynb Youtube / Bilibili Homework 3 Due,
Homework 4 Released,
Homework 4 Extra Released
11/5 No class - Democracy Day
11/7 19 - Training Large Models Chen pdf YouTube / Bilibili
11/12 20 - Generative Models Chen pdf YouTube / Bilibili
11/14 21 - Generative Models Implementation Chen ipynb YouTube / Bilibili
11/16 Homework 4 Due, Homework 4 Extra Due
11/19 22 - Customize Pretrained Models Chen pdf
11/21 23 - Model Deployment Chen pdf Youtube / Bilibili
11/26 24 - Machine Learning Compilation and Deployment Implementation Chen ipynb Youtube / Bilibili
11/28 No class - Thanksgiving
12/3 25 - Future Directions / Q&A Both
12/5 26 - Student project presentations Students

Slides下载

AI真是太好用了XD

#!/bin/bash

# 创建一个目录来存放下载的幻灯片
OUTPUT_DIR="dlsys_course_slides"
mkdir -p "$OUTPUT_DIR"
echo "将在 '$OUTPUT_DIR/' 目录中保存所有文件"
echo "-----------------------------------------"

# 定义一个辅助函数来处理单个文件的下载,避免代码重复
download_file() {
    local filename="$1"
    local url="$2"

    echo "正在下载: $filename"
    # 使用 wget 命令
    # -O 指定输出文件名 (包括目录)
    # -q 使其静默运行,--show-progress 显示一个简洁的进度条
    wget -q --show-progress -O "$OUTPUT_DIR/$filename" "$url"

    if [ $? -eq 0 ]; then
        echo "下载完成."
    else
        echo "下载失败: $filename"
    fi
    echo "" # 添加一个空行以提高可读性
}

# --- 所有 PDF 链接和对应的文件名都硬编码在此 ---

download_file "1 - Introduction - Logistics.pdf" "https://dlsyscourse.org/slides/intro.pdf"
download_file "2 - ML Refresher - Softmax Regression.pdf" "https://dlsyscourse.org/slides/2-softmax_regression.pdf"
download_file "3 - Manual Neural Networks - Backprop.pdf" "https://dlsyscourse.org/slides/manual_neural_nets.pdf"
download_file "4 - Automatic Differentiation.pdf" "https://dlsyscourse.org/slides/4-automatic-differentiation.pdf"
download_file "6 - Optimization.pdf" "https://dlsyscourse.org/slides/fc_init_opt.pdf"
download_file "7 - Neural Network Library Abstractions.pdf" "https://dlsyscourse.org/slides/7-nn-framework.pdf"
download_file "9 - Normalization Dropout Implementation.pdf" "https://dlsyscourse.org/slides/norm_reg.pdf"
download_file "10 - Convolutional Networks.pdf" "https://dlsyscourse.org/slides/conv_nets.pdf"
download_file "11 - Hardware Acceleration for Linear Algebra.pdf" "https://dlsyscourse.org/slides/11-hardware-acceleration.pdf"
download_file "12 - Hardware Acceleration + GPUs.pdf" "https://dlsyscourse.org/slides/12-gpu-acceleration.pdf"
download_file "15 - Sequence Modeling + RNNs.pdf" "https://dlsyscourse.org/slides/rnns.pdf"
download_file "17 - Transformers and Autoregressive Models.pdf" "https://dlsyscourse.org/slides/transformers.pdf"
download_file "19 - Training Large Models.pdf" "https://dlsyscourse.org/slides/15-training-large-models.pdf"
download_file "20 - Generative Models.pdf" "https://dlsyscourse.org/slides/16-generative-models.pdf"
download_file "22 - Customize Pretrained Models.pdf" "https://dlsyscourse.org/slides/22-augment-pretrained-models.pdf"
download_file "23 - Model Deployment.pdf" "https://dlsyscourse.org/slides/23-model-deployment.pdf"

# --- 下载列表结束 ---

echo "-----------------------------------------"
echo "所有预设的 PDF 均已下载完毕"